Team 9: Development of Power Converting Sub-System of Kite Power Generator

Andrew Colangelo, Zachary Ezzo, Matthew Hedine, Denitsa Kurteva

Advisor: Dr. Kunihiko Taira Sponsor: Mr. Jeff Phipps

Presentation Overview

- Project Scope/Goals
- Demonstration Model
- Concept Model
- Challenges Encountered
- Planned Methodology/Future Plans

Summary

Matthew Hedine

The Problem at Hand

Worlds energy consumption expected to increase by 48% by the year 2040[1]

- Wind turbine
- Solar energy
- Nuclear energy
- Optimize for Greek Islands
 - Wind speeds of around 20mph

Design and build the power generating system of a kite power generator, and scale for a 100kW concept kite.

Constraints

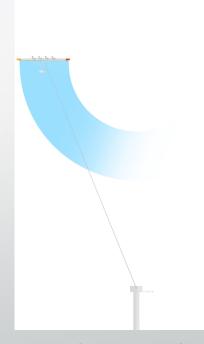
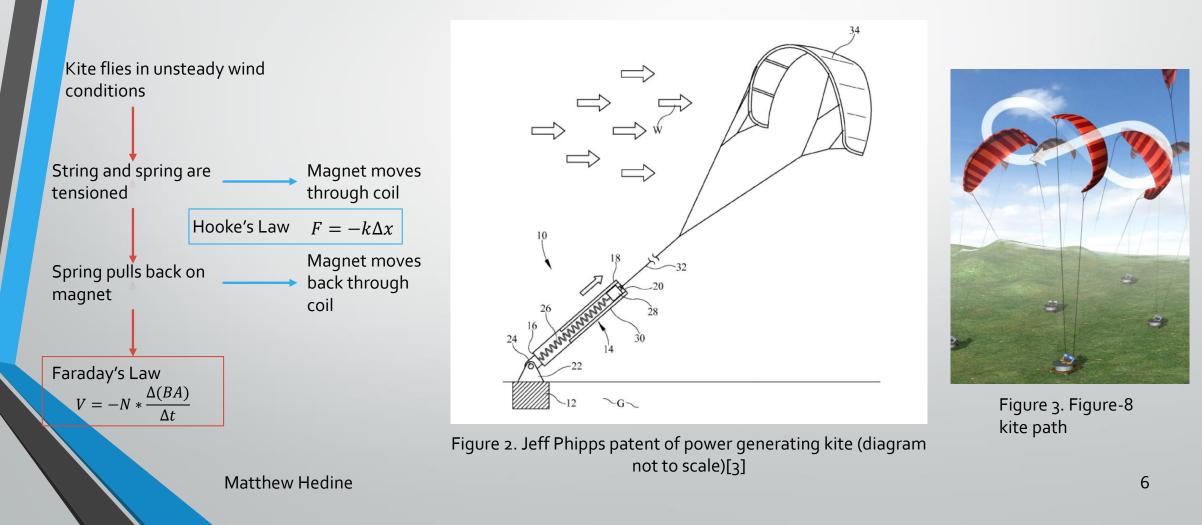

- Altitude between 500 and 1500 feet
- Must deliver AC power to grid
- Limited to off the shelf products
- Optimized for Greek Islands

Figure 1. Picture showing mountainous Greek islands

Project Goals


- Demonstrate that magnet in electrical coil will generate usable electricity
 - Use a kite to oscillate magnet
 - Varying tension in line/spring
 - Power a lightbulb
- Concept for a method for optimization of energy output based on wind speeds
 - Scale for a 100kW kite
- Determine feasibility for mass power generation

Makani energy "kite"

Matthew Hedine

General Schematic

Demo Model

- Method of varying effective spring coefficients
 - Concentric springs
- Determined optimal conditions for necessary power generation
 - Magnet speed/strength
 - Number of coils
- Magnet of 1.32T strength moving at a speed of 50 wraps/sec to power a 40W light bulb

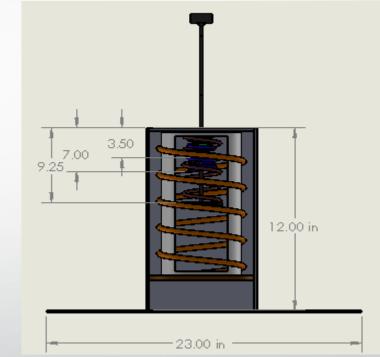


Figure 4. Concept for kite stabilization/control

Kite Selection

- Tested kites for maneuverability
- Traction and Stunt kite
 - Traction kite
 - More lift
 - Higher control
 - Slower movements
 - Stunt Kite
 - Less lift
 - Faster maneuvers
 - Less stable
 - Force output via spring scale
 - 3-5 lbs on straight path, 10-15 lbs on curves

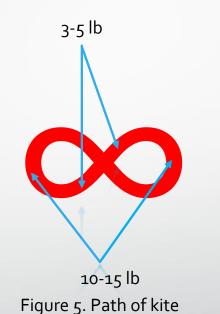
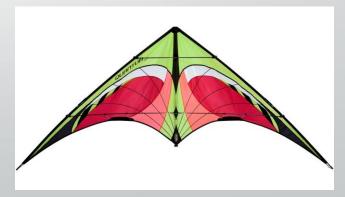



Figure 5. Traction kite that was tested

Matthew Hedine

Demo Testing

- Two lines tied from junction of all control stings
 - One on left, one on right
- Strings meet at quick clip in middle
- Single line down to power generator
- Initial voltage generation measurements
 - Max voltage was 20mV
 - 3 orders of magnitude less than expected

Andrew Colangelo

Figure 7. Diagram showing how 3rd string was attached

Figure 8. Demonstration model preliminary test setup

Proposed Improvements

- Acrylic Housing
 - Does not interact with magnetic field
 - Thinner sidewalls
 - Allows for stationary coil
- Tighter wire wraps and more of them
- Lower coefficient springs
 - Allows for faster and more compression

Table 1. Gantt Chart for Spring semester

	Springs	Length (in)	Stiffness (lbs/in)	Outer D (in)	Inner D (in)	Solid Height (in)
	1	9.00	13.00	3.00	2.62	1.54
Old	2	6.88	9.00	1.50	1.25	1.88
	3	3.50	153	1.00	o.68	2.11
	1	9.25	2.20	2.25	2.01	1.68
New	2	7.00	1.70	1.55	1.37	1.61
	3	3.50	153	1.00	0.68	2.11

Lift Calculations/Kite Strings

- 35 mph headwind from 20mph wind at sea level
 - Lift force at 5 degrees angle of attack is 15lbf
 - Lift force at 15 degrees angle of attack is 45lbf
- 1/4" Diameter Nylon String
 - Breaking Strength: 1805 lbf
 - ۲ Weight: 0.016 lb/ft
 - Mold and mildew resistant
 - Great strength to weight ratio
- String deflection was estimated to be ~0.5in
 - Negligible potential energy lost to string

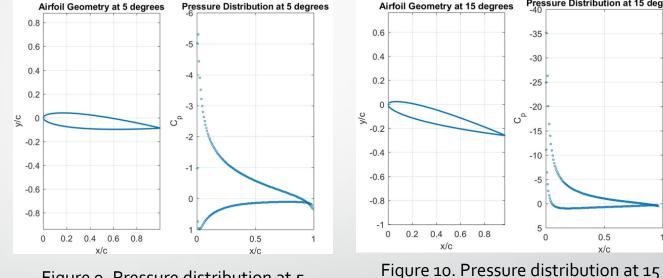


Figure 9. Pressure distribution at 5 degrees

Pressure Distribution at 15 degrees

0.5

x/c

-35

-30

-25

-20 പ

-10

degrees

0.6 0.8

x/c

Mimicking Kite Motion

- Designed concepts for kite oscillation if kite cannot be correctly maneuvered
 - Motor will be used to mimic the tension in the line
- Allows for optimization of desired kite frequency
- Kite force can be varied by winding string around shaft
 - Compresses spring

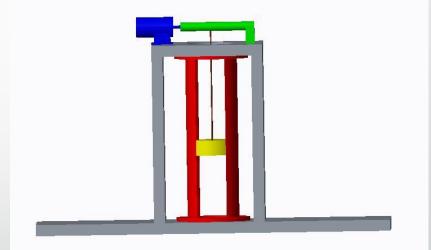
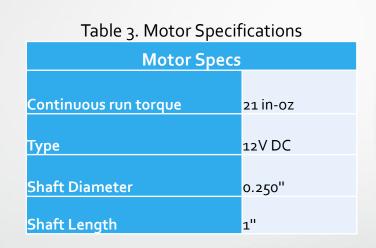



Figure 11. Motor to be used for kite motion mimicking

Motor Selection

- High Torque motor
- Will be programed to achieve different compression rates
- Different setups for different compression lengths

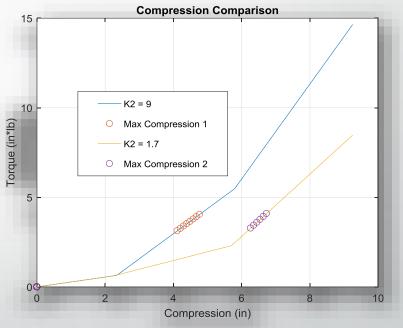


Figure 12. Compression of springs using selected motor

Challenges Encountered

- Controlling demonstration model kite
 - Finding suitable wind to maintain steady flight path
- Attaching string to housing without loss in maneuverability and deforming kite
- Narrowing down the scope
- Much lower power generation than expected

Figure 13. Icing on an airfoil

Planned Methodology

Table 2. Gantt Chart for Spring semester

The le blance	Duration Start	04-4	art Finish	Feb			Mar							
Task Name		Start		Jan 23	Jan 30	Feb 6	Feb 13	Feb 20	Feb 27	Mar 6	Mar 13	Mar 20	Mar 27	Apr 3
Order kites	10d	01/23/17	02/03/17											
Finalize ground plate and housing designs	10d	01/23/17	02/03/17											
Machine grounding plate	7d	02/01/17	02/09/17											
3D print springs housing	7d	02/01/17	02/09/17											
Test kites	8d	02/08/17	02/17/17											
Kite control concept generation	10d	02/13/17	02/24/17											
Kite control concept selection	6d	02/25/17	03/03/17											
Kite performance optimization	8d	03/01/17	03/10/17											
Concept kite material selection	5d	03/08/17	03/14/17											
Demonstration model testing	26d	03/01/17	04/05/17											
Refine demonstration model	14d	03/17/17	04/05/17											
Finalize 100kw scale model concept	6d	04/01/17	04/07/17											

- Weekly meetings with sponsor/faculty advisor
- Bi-weekly meetings with team to tackle problems and catch up on individual tasks

Future Plans

- Machine acrylic housing for copper coil
- Test demonstration model with kite attached
- Determine where losses are in power generator
- Program motor to simulate kite motion at varying wind speeds
- Scale up for 100kW of power
 - Is this feasible for commercial purposes?

Table 3. Budget breakdown

ltems	Cost (USD)
3 springs	129.44
Magnet	48.26
2 kites	270.27
Al sheet	162.93
Copper ire	13.2
Spring scale	71.13
Screws	16
New springs	76.69
Acrylic rod	351
DC motor	99.53
TOTAL:	<mark>1,238.45</mark>

Summary

Design and build the power generating system of a kite power generator, and scale for a 100kW concept kite.

- Demonstration Model has been assembled and preliminary test have been conducted
 - Induced voltage 3 orders of magnitude lower than expected
- Lift and elastic losses for concept kite
 - Determines springs needed for concept model
- Motor will be used to simulate kite oscillation and allow for optimal frequency
 - Feasibility of reaching optimal frequency

References

[1] http://www.eia.gov/todayinenergy/detail.php?id=26212
[2] http://www.climatechangepost.com/greece/fresh-water-resources/
[3] https://www.uspto.gov/patents-application-process/search-patents
[4] http://www.conserve-energy-future.com/Disadvantages_SolarEnergy.php
[5] https://www.windfinder.com/weather-maps/forecast/greece#6/38.367/23.810
[6] http://www.kitenergy.net/technology-2/key-points/
[7] https://adrienjousset.wordpress.com/2009/09/15/kitano/
[8] https://www.ted.com/talks/saul_griffith_on_kites_as_the_future_of_renewable_energy?language=en

Questions?